
A Performance Comparison of Myrinet
Protocol Stacks

Ron Brightwell, Bill Lawry,
Mike Levenhagen, and Rolf Riesen

Sandia National Labs

Arthur B. Maccabe
University of New Mexico

Outline

• Objective
• COMB benchmark suite
• Hardware
• Software
• Results and analysis
• Summary

Objective

• Point of this paper was to demonstrate the utility
of the COMB benchmark suite in analyzing
different protocol stacks

• Actual performance data is really secondary

Communication Offload MPI
Benchmark(COMB)

• Measures the ability of an MPI implementation to
overlap computation and communication

• Ability to overlap related to
– Quality of MPI implementation
– Capabilities of the underlying network layers

• Provides insight into the relationship between
network performance and host CPU performance

• Needed to quantify the benefit of “application
offload” in Portals

COMB Design Goals

• Quantify effectiveness of offloading MPI
functionality to programmable NICs and Portals
hardware

• Accurately measure
– CPU availability
– Bandwidth

• Portable

Previous Work

• Overhead
– Netperf

• Two processes per node
• Assumes process driving communication

relinquishes the CPU
– Portability and accuracy issues

• Overlap
– Pallas MPI benchmark’s “exploit CPU method”
– Various others, but no definitive metric for

measuring overlap with respect to overall
performance

COMB Approach

• Two nodes
• One process per node

– Node 0
• Facilitate communication
• I/O

– Node 1
• Simulate computation
• Communication
• Timing

• Use MPI for portability

COMB Approach (cont’d)

• Time a specified amount of work with no
communication

• Time same amount of work with communication
• Ratio is CPU availability (1 – overhead)

COMB Methods

• Poll
– Measures sustained maximum bandwidth
– Perform communication throughout work
– Allow for maximum possible overlap

• Post-Work-Wait (PWW)
– Time all MPI calls and do work
– Tests for overlap under practical restrictions on

MPI calls

Poll Method

pre-post asynchronous receive(s)
read current time
for (i = 0; i < work/poll factor; i++) {

for (j = 0; j < poll factor; j++) {
/* nothing */

}
if (asynchronous receive is complete) {

start asynchronous reply(s)
pre-post asynchronous receive(s)

}
}
read current time

Poll Method (cont’d)

• All receives are posted before sends
• Ping-pong messages flow in both directions
• Each process polls for message arrival
• Replacement messages are propagated as soon as

previous batch completes
• Bandwidth and CPU availability are computed after a pre-

determined amount of “computation”
• Polling interval can be adjusted to demonstrate tradeoff

between bandwidth and availability
• Never blocks waiting for message arrival
• Accurate measure of availability

PWW Method

read current time
pre-post asynchronous send(s) & receive(s)
read current time
for (i = 0; i < work interval; i++) {

/* nothing */
}

read current time
wait for asynchronous send(s) & receive(s)
read current time

PWW Method (cont’d)

• Time work independent of messaging
• Collects wall clock times for different phases

– Non-blocking post phase
– Work phase
– Wait phase

• Worker process waits for current batch of
messages

Hardware

• Compaq DS10L
• 617 MHz Alpha EV67 processor
• 256 MB RAM
• Myrinet LANai-9, 64-bit 33 MHz
• Mesh64 switch

Platform - Software

• RedHat 6.2 Alpha
• Linux 2.2.18
• Portals 3.1 data movement interface
• MPICH 1.2.0 over Portals 3.1 direct device

What is Portals?

• A data movement layer
– Data movement is fundamental to more than just

parallel applications
– Runtime systems, I/O systems, parallel debuggers

• A programming interface
– User-level or kernel-level

• Not a programming model
• Not a wire protocol

Portals 3.x Features

• Best effort, in-order delivery
• Well-defined transport failure semantics
• Expected messages
• One-sided operations

– Put and Get
• Zero-copy message passing

– Increased bandwidth
• OS-bypass implementation

– Reduced latency
• Application-bypass semantic

– No polling, no threads
– No host CPU utilization
– Reduced software complexity

Portal Addressing
Operational BoundaryPortal Table

Memory
Descriptors

Event Queue
Memory
Regions

Match List

Application
SpacePortal Space

Access Control Table

What Makes Portals Different?

• Provides elementary building blocks for supporting higher-
level protocols well

• Allows structures to be placed in user-space, kernel-space,
or NIC-space

• Allows for OS-bypass implementations
• Receiver-managed offset allows for efficient and scalable

buffering of unexpected messages
• Supports multiple protocols within a process
• Runtime system independent
• Well-defined failure semantics
• Supports application-bypass semantic

Supported Higher-Level Systems

• High-level message passing libraries
– MPICH
– MPI/Pro, ChaMPIon/Pro
– RPC
– InterComm
– Intel NX
– nCUBE Vertex
– Initial MPI-2 one-sided

specification from March 1996
– Cray SHMEM variant

• Cplant™ Runtime system
– Distributed server library
– Dynamic process creation library

• File systems
– ASCI/Red fyod
– Cplant™ ENFS
– Lustre

• In progress
– MPI-2 one-sided (MSTI)
– TotalView channel implementation

(Sandia)

Portals Over RMPP

• Reliable Message Passing Protocol (RMPP)
– Linux kernel module that works with any Linux

network device
– Provides flow control and reliability
– Interrupt driven
– Copies from NIC to kernel to user

• Works with a Portals kernel module
– All Portals processing occurs in the kernel
– No OS bypass

Portals Myrinet Control Program

• Runs on the Myrinet NIC processor
• Portals processing can occur on the NIC or in the

kernel
• OS bypass
• Limitations

– Reliability and flow control protocol is not very
scalable

– Limited to using physically contiguous 4 MB
memory regions

Ping-pong Latency

Ping-pong Bandwidth

Poll Method: Bandwidth (5KB)

Poll Method: Bandwidth (100KB)

PWW Method: Bandwidth (5 KB & 100 KB)

Poll Method: CPU Availability (5 KB)

Poll Method: CPU Availability (100 KB)

PWW Method: CPU Availability (5 KB)

PWW Method: CPU Availability (100 KB)

PWW Method: CPU Overhead (RMPP)

PWW Method: CPU Overhead (MCP Kernel)

PWW Method: CPU Overhead (MCP NIC)

Summary

• COMB measures the ability of an MPI
implementation to overlap computation and
communication

• COMB provides more insight into the relationship
between network performance and host CPU
performance

• Helps to quantify the benefit of “application
offload”

Acknowledgments

• Arthur B. Maccabe, Bill Lawry
– COMB design and implementation

• Rolf Riesen
– RMPP module

• Mike Levenhagen
– Portals MCP

• Ron Brightwell, Arthur B. Maccabe, Rolf Riesen
– Portals API

Application-Bypass Results

